Jonathan Peter Lorraine

Homepage: www.jonlorraine.com Email: lorraine@cs.toronto.edu Location: Toronto, Ontario, Canada Citizenship: Canadian/U.S.

Professional Experience

2022-Current	Research Scientist, NVIDIA Working on generative modelling with Sanja Fidler's group at the Toronto AI Lab.
2017-Current	Graduate Researcher, Vector Institute Papers accepted to multiple top machine learning conferences. Researching hyperparameter optimization, learning in games, and nested optimization.
2021-2022	Research Scientist Intern, Google Worked on research and applied engineering for an AutoML platform used across Google for production-ready models. Designed a method used by our team to select parameters for production performance with $\sim 10 \times$ less compute. Led a paper on the method. Also, mentored senior engineers on best hyperparameter optimization methods, and promoted cutting-edge methods.
2021	Research Scientist Intern, Facebook AI Research (Now Meta AI) Led a spotlight paper acceptance at AAMAS. Worked with Jakob Foerster (homepage) on ma- chine learning in multi-agent systems. Advised product teams on state-of-the-art hyperparam- eter optimization techniques, leveraging personal research to enhance model performance and efficiency across various projects.
2016-2022	(Lead) Teaching Assistant, University of Toronto Designed content, conducted lectures, and organized grading for 10+ Computer Science courses, including four graduate-level courses on ML topics such as Deep Learning and Natural Lan- guage Computing. Courses include:
	 CSC2547: Automated Reasoning with Machine Learning (Winter 2023) CSC2626: Imitation Learning for Robotics (Fall 2022) CSC2547: Learning to Search (Fall 2019)
	 CSC413/2516: Neural Networks and Deep Learning (Winter 2020, Winter 2021) CSC412/2506: Probabilistic Learning and Reasoning (Winter 2019) CSC411/2515: Machine Learning (Fall 2018, Winter 2021)
	 CSC401/2511: Natural Language Computing (Winter 2022) CSC311: Introduction to Machine Learning (Fall 2020) CSC165: Mathematical Expressions and Reasoning for Computer Science (Fall 2016)
2016-2019	Machine Learning Engineer / Data Scientist, Electronica AI Collaborated with internal and client C-suite leaders to design, test, validate, and optimize auto- mated financial trading strategies, leveraging machine learning to improve predictive accuracy and trade execution. Led multidisciplinary teams of more than five internal stakeholders across Software Engineering, Finance, and Legal to combine quantitative methods with AI, resulting

in market-making strategies with daily order flow of 200M+.

2016-2018	Software Developer, Alkemi
	Conducted stress testing on financial exchanges to identify bottlenecks and vulnerabilities in real-world scenarios. Also, performed optimization and validation of automated trading strate- gies based on intra/inter-exchange price discrepancies.
2013-2016	Research Assistant, University of Toronto Worked with Statistics and Operations Research Professor Dmitry Krass (homepage) to gener- ate computational results resulting in 3 publications.
2012-2014	Mobile Application Developer, First Class Education Software Developed applications for teaching university level biology on Android and iOS. (app. 1, 2)
	Education
2018-2024	Ph.D. in Computer Science, University of Toronto Machine learning group, advised by Professor David Duvenaud (homepage). Thesis: Scalable Nested Optimization for Deep Learning
2016-2018	M.Sc. in Applied Computing, University of Toronto Specialist in Data Science, advised by Professor David Duvenaud. Thesis: Black-Box Optimizers for Robust and Efficient Optimization of Trading Strategies.
2012-2016	H.B.Sc., University of Toronto Specialist in Computer Science, major in Mathematics, and a minor in Economics. Graduated with high distinction.
	Publications
2024	Mehta, B., Lorraine, J., Masson, S., Arunachalam, R., Pervaiz Bhat, Z., Lucas, J., George Zachariah, A. Improving Hyperparameter Optimization with Checkpointed Model Weights We input checkpointed model weights to hyperparameter optimization surrogate functions to featurize the architecture, and more. (link)
2024	Xie, K., Lorraine, J., Cao, T., Gao, J., Lucas, J., Torralba, A., Fidler, S., Zeng, X. LATTE3D: Large- scale Amortized Text-To-Enhanced3D Synthesis We generate high-quality meshes from text robustly in 400ms by combining 3D priors, amor- tized optimization, and a surface rendering stage. Accepted at ECCV 2024. (link)
2024	 Bae, J., Lin, W., Lorraine, J., Grosse, R. Training Data Attribution via Approximate Unrolled Differentiation We introduce a training data attribution method that works in non-converged models with multi-stage training. (link)
2024	Lim, D., Marron, H., Law, M., Lorraine, J., Lucas, J. Graph Metanetworks for Processing Diverse Neural Architectures We propose a way to process diverse network architectures with equivariance to parameter permutation symmetries. Spotlight at ICLR 2024 (link)
2023	Zhang, M., Desai, N., Bae, J., Lorraine, J., Ba, J. Using Large Language Models for Hyperparameter Optimization

	We use LLMs for optimizing hyperparameters, allowing new capabilities like treating our code as a hyperparameter. Accepted at NeurIPS 2023 FMDM Workshop. (link)
2023	Lorraine, J., Xie, K., Zeng, X., Lin, C., Takikawa, T., Sharp, N., Lin, T., Liu, M., Fidler, S., Lucas, J. ATT3D: Amortized Text-To-3D Object Synthesis We train a single, amortized model to output objects for various text prompts, allowing gener- alization, interpolations, and reduced training cost. Accepted at ICCV 2023. (link)
2022	 Lorraine, J., Anderson, N., Lee, C., De Laroussilhe, Q., Hassen, M. Task Selection for AutoML System Evaluation We select relevant development tasks to accurately assess the impact of AutoML system changes on holdout tasks with different distributions, as in production. (link)
2022	 Vicol, P., Lorraine, J., Duvenaud, D., Grosse, R. On Implicit Bias in Overparameterized Bilevel Optimization We characterize implicit regularization from various bilevel optimization methods. Oral at ICML 2022. (link)
2022	Lorraine, J., Acuna, D., Vicol, P., Duvenaud, D. Complex Momentum for Optimization in Games We generalize gradient descent with momentum, which improves convergence in adversarial games with near identical compute cost. Accepted at AISTATS 2022. (link)
2022	Lorraine, J., Vicol, P., Parker-Holder, J., Kachman, T., Metz, L., Foerster, J. Lyapunov Exponents for Diversity in Differentiable Games We find multiple solutions in games by branching optimization near bifurcations, found with Lyapunov exponent based objectives. Oral at AAMAS 2022. (link)
2021	Richter-Powell, J., <u>Lorraine, J.</u> , Amos, B. Input Convex Gradient Networks We model convex gradients by integrating a JVP parameterized by a neural network. Spotlight at the Optimal Transport and ML Workshop at NeurIPS 2021. (link)
2021	Raghu, A., <u>Lorraine, J.</u> , Kornblith, S., McDermott, M., Duvenaud, D. Meta-learning to Improve Pre-training We meta-learn pre-training hyperparameters with gradients by combining iterative and im- plicit differentiation. Accepted at NeurIPS 2021. (link)
2020	 Lorraine, J., Vicol, P., Duvenaud, D. Optimizing Millions of Hyperparameters by Implicit Differentiation We jointly tune as many hyperparameters as parameters, while being only few times more costly compute than standard training. Accepted at AISTATS 2020. (link)
2019	Lorraine, J., Hossein, S. JacNet: Learning Functions with Structured Jacobians We learn functions by parameterizing their derivative, allowing us to easily enforce constraints on higher-order information. Accepted at the ICML 2019 INNF Workshop. (link)
2018	MacKay, M., Vicol, P., Lorraine, J., Duvenaud, D., Grosse, R. Self-Tuning Networks: Bilevel Optimization of Hyperparameters using Structured Best-Response Functions Our hypernetwork architecture scales hyperparameter optimization to modern networks. Ac- cepted at ICLR 2019. (link)

2018	Adam, G., <u>Lorraine</u> , J. Understanding Neural Architecture Search Techniques We investigate failure modes of neural architecture search methods, and propose solutions by modulating hidden state interpretability. (link)
2017	Lorraine, J., Duvenaud, D. Stochastic Hyperparameter Optimization through Hypernets We learn a differentiable loss for hyperparameters, which can scale to thousands of dimensions. Accepted at the NIPS 2017 Meta-learning Workshop. (link)
	Other Research Experience
2016	Optimizing Facility Location and Design Developed a method to solve a non-linear concave knapsack problem. Accepted at the Euro- pean Journal of Operational Research. (link)
2016	Budgetary Effects on Pricing Equilibrium in Online Markets Extended prior work to account for vendor cost affect on equilibria. (link)
2015	On Covering Location Problems on Networks with Edge Demand Made a method for finding numerical solutions to a max covering problem on a network with edge-based demand. Accepted at the journal of Computers ở Operations Research. (link)
2014	Structural Properties of Voronoi Diagrams in Facility Location with Continuous Demand Designed an algorithm for finding a point to add a Voronoi diagram, with a Voronoi cell that has maximal area. Accepted in Discrete Applied Mathematics. (link)

Service

2023	Reviewer: The IEEE/CVF Conference on Computer Vision and Pattern Recognition
2022	Reviewer: International Conference on Autonomous Agents and Multi-agent Systems
2022	Reviewer: International Conference on Automated Machine Learning
2021,22,23	Reviewer: International Conference on Machine Learning
2021,22	Reviewer: International Conference on Artificial Intelligence and Statistics
2020,21	Reviewer: International Conference on Learning Representations
2020,21,24	Reviewer: Conference on Neural Information Processing Systems
2018	Reviewer: NIPS Smooth Games Optimization and Machine Learning Workshop
2019-2021	Organizer: Meta-learning reading group at the University of Toronto and Vector institute jointly

Grants & Awards

with Mengye Ren and Eleni Triantafillou.

- ²⁰²⁴ Monica Ryckman Bursary 4000 CAD
- 2024 Doctoral Completion Award: 4100 CAD
- 2023 Vector Research Grant: 6000 CAD
- 2023 Doctoral Completion Award: 4000 CAD
- ²⁰²² Vector Research Grant: 3000 CAD

- AAMAS Student Scholarship Award: 1200 USD
- Vector Research Grant: 6000 CAD
- Ray Reiter Graduate Award: 1000 CAD
- 2020 Vector Research Grant: 6000 CAD
- ²⁰¹⁹ Vector Research Grant: 6000 CAD
- ²⁰¹⁷ MITACS Accelerate Research Grant: 30 000 CAD
- ²⁰¹⁴ NSERC Undergraduate Research Award: 4500 CAD
- ²⁰¹³ Cheng Yu Tung Grant: 4800 CAD
- GE-STAR Award: 4500 USD

Talks

- ATT3D: Amortized Text-to-3D Object Synthesis. NVIDIA Computer Vision, Remote.
- ²⁰²³ ATT₃D: Amortized Text-to-3D Object Synthesis. NVIDIA Omniverse, Remote.
- AutoML and Scalable Hyperparameter Optimization. NVIDIA, Remote.
- 2022 Nested-optimization-aware Hyperparameter Optimization. University of Toronto. Remote.
- Lyapunov Exponents for Diversity in Differentiable Games. AAMAS, 2022. Remote.
- ²⁰²² Bilevel, Hypergradient Hyperparameter Optimization. University of Toronto. Remote.
- 2022 Complex Momentum for Optimization in Games. AISTATS, 2022. Remote.
- Lyapunov Exponents for Diversity in Differentiable Games. Google Brain. Remote.
- 2021 Gradient-Based Hyperparameter Optimization. Google. Remote.
- AutoTFX Reading Group. Google. Remote.
- ²⁰²¹ Using Bifurcations for Diversity in Learning. BOFM Workshop ICML, 2021. Remote.
- ²⁰²¹ Gradient-Based Hyperparameter Optimization. Facebook AI Research. Remote.
- 2020 Optimizing Millions of Hyperparameters by Implicit Differentiation. AISTATS, 2020. Remote.
- ²⁰¹⁹ Meta-Learning Reading Group, Vector Institute. Toronto, Canada.
- JacNet: Learning Functions with Structured Jacobians, ICML 2019 Invertible networks and normalizing flows workshop. Long Beach, USA.
- ²⁰¹⁸ Self-Tuning Networks: Bilevel Optimization of Hyperparameters using Structured Best-Response Functions, Vector Institute. Toronto, Canada.
- ²⁰¹⁸ Applied Research in Action 2018, University of Toronto. Toronto, Canada.
- 2017 Complex Order Book Strategies and Intra/Inter-Exchange Arbitrage, Alkemi AI. Toronto, Canada.
- ²⁰¹⁷ Hyperparameter Opt. with Hypernets, NIPS Meta-Learning Workshop 2017. Long Beach, USA.
- 2017 Bayesian Optimization for Trading Strategies, Electronic AI. Toronto, Canada.
- Maximizing the Trading Area of a new Facility, Rotman School of Management. Toronto, Canada.
 On Covering Location Problems on Networks with Edge Demand, Rotman School of Management.

Student Supervision & Mentorship

 $\begin{array}{ll} {}_{2021\text{-}2022} & \text{Jack Richter-Powell (McGill Undergrad.} \rightarrow \text{UofT Research} \rightarrow \text{MIT PhD student} \rightarrow \text{NVIDIA Intern)} \\ {}_{2018\text{-}2019} & \text{Haoping Xu (UofT Undergrad.} \rightarrow \text{UofT PhD student)} \end{array}$

Patents

Toronto, Canada.

- ²⁰²³ Lorraine, J., Xie, K., Gao, J., Fidler, S., Lucas, J., Zeng, X. **Training Data Sampling for Neural** Networks
- 2023 Lorraine, J., Xie, K., Fidler, S., Lucas, J. Neural Network-Based Digital Asset Generation

Last updated: July 1, 2024